Students completing the B.S./B.A. in Biology will demonstrate:

1) a broad-based knowledge of biology at multiple levels; an understanding of the different levels of biological organization, from molecules to ecosystems.

2) an awareness of biological diversity and an understanding that all living organisms are genetically related - a result of the ongoing process of biological evolution.

3) competency in reading, understanding, and critically evaluating scientific information across major areas of the curriculum (cellular/molecular, systems/organisms, ecology/evolution).

4) an understanding of the process and application of scientific inquiry; the ability to develop well-reasoned experimental hypotheses and design experiments by which to test them.

5) an ability to apply mathematical or statistical approaches to understanding biological information; an ability to interpret graphical representations of biological information.

6) an ability to communicate scientific ideas clearly, orally and in writing, in forms appropriate to both general and professional audiences.

7) an understanding of the importance of biological science in a modern society.
Students completing the B.S./B.A. in **Marine Biology** will demonstrate:

1) a broad-based knowledge of biology at multiple levels; an understanding of the different levels of biological organization, from molecules to ecosystems; an understanding that all living organisms are genetically related - a result of the ongoing process of biological evolution.

2) an awareness of biological diversity in the marine environment and the mechanisms that shape this diversity.

3) an understanding of the mechanisms that influence the structure and function of marine communities and ecosystems, and an appreciation for the bathymetric and biogeographic distributions of organisms in the sea.

4) an awareness of both global and local environmental challenges in the marine environment.

5) competency in reading, understanding, and critically evaluating scientific information across major areas of the curriculum (cellular/molecular, systems/organisms, ecology/evolution); an ability to communicate scientific ideas clearly, both orally and in writing to both general and professional audiences.

6) an understanding of the process and application of scientific inquiry; the ability to develop and test well-reasoned hypotheses in both the field and laboratory; an ability to apply mathematical or statistical approaches to biological data, and to interpret graphical representations of biological information.

7) an appreciation of the advantages of field-based research and the importance of biological science to modern society