

Twenty-third Annual
University of Oregon
Eugene Luks Programming Competition

2019 April 13, Saturday
am10:00 – pm2:00

Problem Contributors
Ramakrishnan Durairajan, Eugene Luks,
Joe Sventek, Chris Wilson

Technical Assistance and Organization
Lauradel Collins, Jonathan Kerr


















































 SERVER NUMBER

The CIS Department at the University of Oregon has a fancy
new data center that services computational requests from its
classes. There are n servers in this center and they will be
providing service to c class requests. Each class request has a
different service time: the ith request needs ti units of time
(here seconds) to be completed.

These requests are in a queue, and must be served in that order (1, 2, …, c). The request
in the front of the queue is to be handled immediately by the first available server, and
request i will cause the server to be busy for ti seconds. At the start, all servers are
available, and if two or more servers become available at the same time, the request goes
to the lowest numbered available server.

Your job is to write a program to determine, for each of the c requests, the number of the
server that will process it.

input
The first line of input contains two space-separated integers N C (1 ≤ ! ≤ ! ≤ 1000),
where N is the number of servers and C is the number of class requests. The next line
contains C space-separated integers, where the ith integer is ti , the time used by request i.

output
The output should be a single line consisting of C space separated integers. Each number
represents the number of the server that processes that class request.

Sample Input

3 10
406 424 87 888 871 915 516 81 275 578

Sample Output

1 2 3 3 1 2 3 1 2 1

A

B

Wide Ways

Willamette Walk-Ways (WWW) is renowned for its integra-
tion of scenic pedestrian/bicycle paths into forested parks for
new communities. Once a park region is set aside, WWW is
contracted to position a promenade through the trees.

The promenade is to be a straight road (with parallel edges) subject to the following condi-
tions

• Construction should not require removal of existing trees, i.e, no trees should obstruct
the promenade (though a tree may remain on the edge).

• At least 1/3 of the trees should be positioned to each side of the promenade.

• The promenade should be as wide as possible given the above constraints.

In this problem, you are to determine the widths achieved for WWW promenades.

For each park instance, you are given the positions of the trees to be preserved and must
determine the maximum feasible width for a promenade.

The first line of the input will declare the number N of communities to be considered. The
second line will be blank. There will also be a blank line between successive instances.

Each instance will start with a number m  25 of trees within the park boundary. Each
of the following m lines will indicate the Cartesian coordinates of a tree, i.e., two numbers
separated by a space. Since the trees will still be saplings at this time, we assume they have
negligible diameter.

The output for each instance should be the achievable path-width rounded to the nearest
tenth numerically. (All I/O lengths are assumed to be given in meters, so only the numeri-
cal values need appear.)

See reverse for sample I/O.

Sample Input

5

2
1.5 1.5
4.5 4.5

4
1.0 1.0
6.0 1.0
7.0 1.0
8.0 1.0

5
1.0 1.0
6.0 1.0
7.0 1.0
8.0 1.0
2.0 4.0

6
1.0 1.0
6.0 1.0
7.0 1.0
8.0 1.0
2.0 4.0
4.0 4.0

7
1.0 1.0
6.0 1.0
7.0 1.0
8.0 1.0
2.0 4.0
4.0 4.0
4.0 2.0

Sample Output

4.2
1.0
4.7
3.5
2.2

Edges of the promenades
for the Sample Output:

i. y = �x+3 and y = �x+9

ii. x = 6 and x = 7

iii. y = 3x� 2 and y = 3x� 17

iv. y = x and y = x� 5

v. y = 2x� 6 and y = 2x� 11

 DATACENTER CONNECTIVITY

One of the fundamental problems in cloud computing is
establishing connectivity between servers across geo-
distributed datacenters. In this problem, we will focus on server
connectivity within a single datacenter.

Assume there are N servers in a datacenter and M server-to-server connections need to be
made. Also, there are three mandatory conditions and additional constraints the
connections should fulfill.

The first requirement is that any server in the datacenter should be able to communicate
with any other server through the connections, possibly, through some other servers.

Attacks are possible. So the second requirement is that even if any one server from the
datacenter gets disabled so that the rest of the servers are unable to communicate with it,
the rest of the servers can still communicate with each other. In other words, the first
requirement still holds for any subset of (N-1) servers.

The third requirement is cost: there shouldn't be any irrelevant connections in the
datacenter. We will call a connection irrelevant if and only if after its' removal, the above
two requirements are still held.

Constraints include

• 1 <= T <= 1000
• 1 <= M <= N * (N - 1) / 2
• 1 <= Sum of all N <= 1000
• Subtask 1: 1 <= N <= 4
• Subtask 2: 1 <= N <= 100

Given N, M, please build a network with N servers and M connections, or state that it is
impossible.

input
The first line of the input contains an integer T denoting the number of test cases. The
description of T test cases follow. The first and only line of each test case contains a pair
of space-separated integers N and M, denoting the number of computers and the number
of connections respectively.

C

output
Output T blocks.

If it is impossible to construct a network with the given parameters for the corresponding
test case, then output -1 -1. Otherwise, output M lines, each of which contains a space-
separated pair of integers denoting the IDs of the servers that should be connected. Note
that multiple connections between any pair of servers and connections connecting a
server to itself are (implicitly) not allowed due to the third requirement.

Sample Input

2
10 1
5 5

Sample Output

-1 -1
1 2
2 3
3 4
4 5
5 1

 COUNT SUBSEQUENCES

A common problem is to determine whether a string S
contains a string T as a subsequence. That is, is it possible to
remove some of the characters of S and end up with T? For
example, if S=ABCABC and T=AC, then the answer is “yes”.
Here we consider a related question: in how many distinct ways is T a subsequence of S?
Using S=ABCABC and T=AC again, the answer should be 3: ABCABC, ABCABC, and
ABCABC.

input
The first line of input contains an integer C (≤ 1000), where C is the number of test
cases. The next C lines each contain 2 space-separated strings, S T. You can assume
that S and T consist of lower case characters (a-z) and that 1 ≤ !"#(!) ≤ !"#(!) ≤ 33.

output
The output C integers on separate lines, each indicating the number of distinct ways in
which T can be a subsequence of S.

Note: The output in the third case can be explained as “20 choose 10”=C(20,10)=184756.

Sample Input

4
abcabc ac
babgbag bag
aaaaaaaaaaaaaaaaaaaa aaaaaaaaaa
abc cba

Sample Output

3
5
184756
0

D

 MOTORCYCLE TOUR

There is a closed loop connecting gas stations,
each with a single pump. You wish to tour all of
the gas stations in the loop.

The stations are numbered 0 through N − 1, and
since the stations form a loop, you can only travel
from station i to station i + 1(mod N). Since it takes some amount of gasoline to get from one
station to another, it is possible that you could run out of gasoline before completing the cycle.

Two pieces of information are associated with each station:

1.! the amount of gasoline that particular pump will dispense (in liters); and
2.! the distance from that station to the next station, in miles.

Initially you have a tank of infinite capacity with no gasoline. You can start the tour at any of the
stations. Since the motorcycle has an infinite capacity tank, it consumes 1 liter of gasoline for
each 10 miles covered. You need to determine the number of the first station at which you can
start traveling and complete the loop.

The first line of the input will be an integer 1 ≤ N ≤ 109 giving the number of stations. Following
will be N lines, each containing two integers 1 ≤ L, D ≤ 109 separated by a space; the integer L
is the number of liters that you will receive at that station, and D is the number of miles to the
next station. The output is the lowest numbered station at which you can start your journey and
complete the cycle through the loop.

Sample Input

4
4 20
1 110
10 30
18 60

Sample Output

2

E

